ZZ-Type a posteriori error estimators for adaptive boundary element methods on a curve☆

نویسندگان

  • Michael Feischl
  • Thomas Führer
  • Michael Karkulik
  • Dirk Praetorius
چکیده

In the context of the adaptive finite element method (FEM), ZZ-error estimators named after Zienkiewicz and Zhu (1987) [52] are mathematically well-established and widely used in practice. In this work, we propose and analyze ZZ-type error estimators for the adaptive boundary element method (BEM). We consider weakly singular and hyper-singular integral equations and prove, in particular, convergence of the related adaptive mesh-refining algorithms. Throughout, the theoretical findings are underlined by numerical experiments.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Equivalent a posteriori error estimates for spectral element solutions of constrained optimal control problem in one dimension

‎In this paper‎, ‎we study spectral element approximation for a constrained‎ ‎optimal control problem in one dimension‎. ‎The equivalent a posteriori error estimators are derived for‎ ‎the control‎, ‎the state and the adjoint state approximation‎. ‎Such estimators can be used to‎ ‎construct adaptive spectral elements for the control problems.

متن کامل

Energy norm based error estimators for adaptive BEM for hypersingular integral equations

For hypersingular integral equations in 2D and 3D, we analyze easy-to-implement error estimators like (h − h/2)-based estimators, two-level estimators, and averaging on large patches and prove their equivalence. Moreover, we introduce some ZZ-type error estimators. All of these a posteriori error estimators are analyzed within the framework of localization techniques for the energy norm.

متن کامل

Gradient Recovery in Adaptive Finite Element Methods for Parabolic Problems

Abstract. We derive energy-norm a posteriori error bounds, using gradient recovery (ZZ) estimators to control the spatial error, for fully discrete schemes for the linear heat equation. This appears to be the first completely rigorous derivation of ZZ estimators for fully discrete schemes for evolution problems, without any restrictive assumption on the timestep size. An essential tool for the ...

متن کامل

A posteriori error analysis of adaptive finite element meth - ods for control constrained distributed and boundary con - trol problems

We develop adaptive finite element methods for distributed and boundary optimal control problems with control constraints. The methods are based on residual-type a posteriori error estimators and incorporate data oscillations. The analysis is carried out for conforming P1 approximations of the state and the co-state and elementwise constant approximations of the control and the co-control. We p...

متن کامل

Explicit and Averaging A Posteriori Error Estimates for Adaptive Finite Volume Methods

Local mesh-refining algorithms known from adaptive finite element methods are adopted for locally conservative and monotone finite volume discretizations of boundary value problems for steady-state convection-diffusion-reaction equations. The paper establishes residual-type explicit error estimators and averaging techniques for a posteriori finite volume error control with and without upwind in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 38  شماره 

صفحات  -

تاریخ انتشار 2014